US Department of Interior National Park Service **Grand Canyon National Park**

Monitoring Grand Canyon Springs for Assessment of Water Resources During Groundwater Withdraw and Climate Changes

John Rihs and Steve Rice

2008 WRD Water Professionals Meeting Feb 12-14, 2008

Park Statistics

- Size = 1,180,862 acres (approx 1,850 mi²)
- Elevation Range = 1,200' to 8,000'
- Number of 7.5 minute quads that include park lands = 72
- Visitation (2001-2006) = Approx. 25,000,000
- Estimated number of seeps & springs = 200+
- Estimated miles of underground rivers & streams = 80+
- Number of side canyons = 300+
- 0.003% of the park is occupied by tributaries.
 Within that 36% of the total riparian flora are found.
- 500 times more species found in riparian areas than surrounding land

Program Overview

- Spring flow is a critical resource to Grand Canyon National Park
- Program documents trends in water quality, quantity, and spring / stream / watershed function
- Springs seen as a singular response to the hydrologic character of a much larger area
 Indication of the status of the supplying aquifer systems
- Planning and management for preservation and use of springs requires benchmark hydrologic dataset

Water Resources

- •Infiltration of precipitation into the porous Kaibab limestone capping the Coconino Plateau is the major source of recharge to aquifers in the canyon.
- •Only a small percentage of total precipitation makes it into the groundwater system. Groundwater moves downward primarily along interconnected fracture zones.
- •The majority of springs in GRCA issue from the regional carbonate "R" aquifer.
- •Bright Angel Shale prevents most groundwater from penetrating below this zone.

Generalized hydrogeologic cross section of the Coconino Plateau. Modified from Flynn and Bills, 2002.

Water Resources

- •Critical for the survival of sensitive riparian areas.
- •Groundwater developments on the Coconino Plateau threaten springs resources along the South Rim of Grand Canyon.
- •Estimated doubling of water demand in the region between 2000 and 2050.

Estimates of M&I Water Demand, 2000-2050 Avilliams Tusayan GRCA Tusayan Tusa

Springs Monitoring

- Bimonthly visits to 16 sites along South Rim
- •3 Gaged, 13 Ungaged
- •Along 40-mile stretch of Tonto Trail between Hermit and Grandview Trails
- •Most springs issue from Redwall-Muav regional carbonate aquifer system
- Many associated with structural features (faults / fractures)

Springs Monitoring

Site visits include:

- Assessment of site
 - Changes in vegetation (type, abundance)
 - •Changes in stream morphology / flood evidence
 - Human activity
- Spring discharge measured using appropriate method
 - Volumetric container (low flow)
 - Flume (moderate flow)
 - •Flow meter (large flow)
- Water quality parameters
- Water sampling
 - Dissolved constituents
 - Laboratory analysis

Springs Monitoring – Water Quality Parameters

- •Parameters measured:
 - •pH, EC, TDS, DO, temperature
- Geochemical data collected / measured:
 - Alkalinity
 - Dissolved constituents
 - •NO₃, SO₄, PO₄
- Laboratory analyses (periodically)
 - Isotopes (stable / radioactive)
 - Major ions
 - Nutrients
 - Trace elements
- Develop relationships / trends over time
- Monitor MCLs

Piper diagram of relations of ion concentrations between South Rim springs.

Springs Monitoring – Water Quality Parameters

NATIONAL PARK SERVICE

- Changes over time
 - Effects of climate / groundwater mining?
- •Recharge zones / seasons
- Groundwater flow paths

Gaging Stations

NATIONAL PARK SERVICE

- •Three gages operated along the South Rim:
 - Hermit Creek (1994-current)
 - Cottonwood Creek (1994-current)
 - •Indian Gardens (1995-current)
- Each site has precipitation gage
- Gage type / design:
 - •USGS-style stilling well / float / potentiometer
 - Solar-powered dataloggers
 - •Record on 15, 30, or 60-minute intervals
 - •Rating curves built from manual measurements of flow

Trend Analysis

NATIONAL PARK SERVICE

- •The Seasonal Kendall (SK) test for trend selected to analyze gage data
 - •Rank rather than numerically-based
 - Accounts for serial dependence
 - Accounts for missing data
 - Data collapsed to monthly and quarterly
 - Seasonal component compares similar periods
 - Assumes trend is monotonic
- •Simple linear regression does not handle "seasonal" or missing data very well
- Very sensitive to outliers

Trend Analysis

- •Plots of discharge over time show seasonal fluctuations, variability, and storm peaks
- Cottonwood Creek has longer periods of no flow as time progresses
- •Wet winter of 2004-2005 shows at Cottonwood and Indian Gardens. Record missing from Hermit
- Seasonal effects strong at Cottonwood, weak at Indian Gardens

Trend Analysis Results

- •Output from test include s-value, p-value, and slope
- •s-value (+1, -1, 0)
- Probability random dataset would yield s-value
- •p-value below 0.05 (5%) is significant
- •Slope shows change in discharge with time
- •Test run on monthly and quarterly mean and median Q
- Monthly values adjusted for the effects of serial dependence
- •Slopes of trend (if identified) compared against median Q

Trend Analysis Results

- •Results show statistically significant decreasing trends at Cottonwood Creek and Indian Gardens
- No discernable trend at Hermit Creek
- •Slopes range from -0.00013 to -0.0033 cfs/yr
- Value small, but percent of median Q significant
- •All sites have sizable periods of missing data attributed to mechanical / weather-related failures
- •Data gaps to be minimized or eliminated by installation of modern gaging equipment

Site	Type of Discharge	S=	p-value	trend?	slope, cfs / yr	% median Q/yr (trend only)
Cottonwood Creek 1994-2007	Monthly Mean	-145	0.0953	у	-0.00013	1.6
	Monthly Median	-170	0.0884	у	-0.00025	3.1
	Quarterly Mean	-55	0.0366	у	-0.00044	5.5
	Quarterly Median	-55	0.0328	у	-0.00042	5.2
Indian Gardens 1995-2005	Monthly Mean	-167	0.0263	у	-0.00330	3.3
	Monthly Median	-169	0.0222	у	-0.00333	3.3
	Quarterly Mean	-49	0.017	у	-0.00300	3
	Quarterly Median	-42	0.0337	у	-0.00333	3.3
Hermit Creek 1994-2007	Monthly Mean	-115	0.1826	n	-0.01227	NA
	Monthly Median	-134	0.113	n	-0.01275	NA
	Quarterly Mean	-7	0.8044	n	-0.00200	NA
	Quarterly Median	-14	0.5891	n	-0.00250	NA

Trend Analysis Results

NATIONAL PARK SERVICE

- •Decreasing trends at 2 of the 3 gage sites indicate springs are being affected by a hydrologic variable, but it has not been identified
 - •Climate change?
 - •Pumping?
 - •Combination or unknown variable?
- Discerning responsible variables:
 - Analysis of precipitation trends
 - Monitoring springs in areas unaffected by potential pumping effects
- •Failure to recognize a trend at Hermit Creek can be potentially attributed to:
 - Actually no trend
 - •Trend exists, but is not monotonic
 - Hydrologically different behavior
 - •pathway, residence time, etc.
 - Isotopic support

New Gages

- Currently replacing 3 gage sites with new pressure transducer systems
 - Less invasive
 - More reliable
 - •Use existing control & supports
- Economic design / installation allows for more sites
 - Install in safer locations
 - Extend S. Rim monitoring E & W
 - •N. Rim gage(s) to compare precipitation vs. discharge relationship
 - Shinumo Creek HBC relocation
- Working with water supply department to instrument Roaring Springs as new permanent site

New Gages

- Designed to fully replace old gage systems minimizing modification
- Controls will be maintained
 - New records related to / combined with previous records
- •PVC design provides secure housing for datalogger and sensor
- Perforations allow flow-through and minimizes sediment buildup
- Currently in prototype phase now
- •Plan to have all gages replaced and running by summer 2008

Conclusions / Future Work

- •Increased water demand / climate change push springs resources into spotlight
- Monitoring network developing a benchmark hydrologic dataset
- •Cottonwood Creek and Indian Gardens show statistically significant decreases in discharge
- Hermit Creek shows no significant trend
- New gages being developed / installed to improve data quality and expand network

